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Identification of Continuous-time ARX-Models
Subject to Missing Data

Yang Song
Eindhoven University of Technology

Control Systems Group, Department of Electrical Engineering

Abstract—This report presents algorithms, theory, and valida-
tion results for identification of continuous-time ARX models
from incomplete sampled data. The missing data that are
expected to have impact on the system identification include both
input and output, and require a new state-space model for the
estimation. Therefore, different algorithms are developed based
on different methods to formulate the equivalent state-space
models adapted to the continuous-time context. These algorithms
are tested and compared with several identification methods, in-
cluding Maximum-likelihood and Expectation-maximization. All
the simulation are implemented using Monte-Carlo simulations
in MATLAB.

Index Terms—system identification, maximum-likelihood,
expectation-maximization, quasi-newton method, missing data,
state-space, sampling, ARX-models

I. INTRODUCTION

SYSTEM Identification is a major field in control and
signal processing on building mathematical models of

dynamical systems using input and output measurements.
Most of the system identification literature [1] [2] deals with
discrete-time models due to the advent of the digital computer
and the suitability of measured data for digital control systems.
Dynamical systems in the physical world are usually described
by the differential equations derived from the physical laws,
e.g., Newton’s first law, Newton’s second law, which indicate a
continuous-time nature. Continuous-time models provide more
advantages than discrete-time models because they provide
stronger connection to system properties and the identified
parameters of the continuous-time model usually have an
immediate physical interpretation. We refer to [3] for some
motivating examples for identifying continuous time models
from sampled data.

Most of methods developed within this field assume that
input-output measurement data are available at every sampling
instant and at constant sampling intervals. In some cases,
however, there are practical reasons for having incomplete
data, e.g., infrequent/ scarce output measurements due to
failing sensor, irregularly sampled systems and unexpected
interruption in regularly sampling, which may lead to inac-
curate estimates. To study the impact of the ‘irregular’ data
and the way to obtain accurate estimates, many studies have
been presented. In discrete-time, ‘irregular’ data show up as
missing measurements. Since some measurements are missing,
the simplest way is to estimate the parameters only with
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the available data. Other strategies require a reconstruction
process, which means to rebuild the ’complete’ data, using
methods such as, the Kalman filter and the fixed-interval
smoothing. This method was discussed in [4] together with
the Expectation-Maximization (EM) algorithm. Other papers,
such as [5], [6] also presented a frequency domain solution to
the system identification problem with missing data.

In contrast, identification of continuous-time systems re-
quire more involved steps, and ‘irregular’ data show up in
different forms. Irregular sampling is often studied; in [9],
[11], continuous-time models without input are considered.
In [15], a method is considered to estimate continuous-time
auto-regressive models with exogenous inputs (ARX) using
the approximation of the differentiation operator under time-
varying sampling rates. Missing data have been discussed
in [10] in frequency domain by treating them as unknown
parameters in the identification problem. In general, few con-
tributions were made for continuous-time system identification
with incomplete data in time domain.

In this thesis, continuous-time ARX (auto-regressive models
with exogenous variables) are chosen to study the identifi-
cation problem since ARX models are the simplest choice
to describe a dynamic process driven by an input with
uncertainties. As mentioned above, digital signals are used
nowadays to control physical dynamic systems, so we derive
several algorithms to formulate the estimation model based
on continuous-time inputs and discrete-time inputs. Moreover
two methods will be discussed to accommodate for missing
data.

The report is organized as follows. In Section II, we present
the objective of the estimation and problem formulation.
Then in Section III, we introduce two different methods to
formulate state-space equivalent model. How to reconstruct the
missing data using Kalman filter is discussed in Section IV.
Maximum-Likelihood method is presented in Section V. Then
two methods of dealing with missing data will be discussed in
Section VI.Section VII presents some numerical illustrations.
Concluding remarks are finally given in Section VIII.

II. PROBLEM FORMULATION

Let us consider a continuous-time ARX (CARX) model that
can be described using the general-linear polynomial form.
This model provides flexibility for both system dynamics and
stochastic dynamics, using the equation:

A(p)y(t) = B(p)u(t) + e(t) (1)



TU/E 2

with
A(p) = pn + a1p

n−1 + a2p
n−2 + · · ·+ an

B(p) = b1p
n−1 + b2p

n−2 + · · ·+ bn,

where t ∈ R represents time, u(t) is the input, y(t) the output,
e(t) a zero mean white noise process with E

{
e2(t)

}
= σ2

e

and p represents derivative so that pnu(t) = dnu(t)
dtn . The

objective is to identify this CARX plant, assuming zero-order
hold, which indicates that a constant value u(tk) holds for
tk ≤ t < tk+1, k ∈ {0, 1, ..., N − 1}. The input and output
are collected at time t1, t2, t3, ..., tN .

A. Input Model

As mentioned in the introduction, we consider the case that
both input and output data can be incomplete. It has been
studied in Isaksson’s work [4] that a new variable z(t) =[
y(t) u(t)

]T
is the key to convert the problem to a form

suitable for any of the missing-output methods. Therefore, it
is reasonable to assume that the system operates in open loop
and input u(t) is also generated via an autoregressive model. A
natural assumption would be to build a continuous-time model
since we want to identify a continuous-time system. We can
model the input as an auto-regressive stochastic process of the
form

Cc(p)u(t) = v(t) (2)

with

Cc(p) = pm1 + cc1p
m1−1 + cc2p

m1−2 + · · ·+ ccm1
,

and where v(t) is continuous-time stationary white process
noise, which is assumed to be Gaussian with zero mean and
intensity zero mean white noise process with E

{
v2(t)

}
= σ2

v .
On the other hand, we can also consider the case where

the input is generated by a computer so that we can assume a
discrete-time model for input, assuming zero-order hold. Then,
we have that

Cd(q)u(k) = w(k) (3)

with

Cd(q) = 1 + cd1q
−1 + cd2q

−2 + · · ·+ cdm2
q−m2

where k ∈ N represents time, w(k) is a zero mean white noise
sequence with E

{
w2(k)

}
= σ2

w, and q represents a time shift
operator so that u(k − 1) = q−1u(k).

The problem we want to solve is to find the coefficients
ak, bk, and ck (cd or cc) based on incomplete sampled output
y(k) and input u(k). If we just ignore the incomplete data we
can only consider the available data without reconstruction,
using the least-squares method. The obvious drawback is that
with an unfavorable pattern of missing data, the number of
samples with complete information may be very small, leading
to biased estimates. The details can be found in next part.

B. Motivating example

As mentioned above, we can estimate the system with the
available data using least-squares method. The strategy is to
identify a discrete-time ARX model first using sampled data

then convert it to continuous time. Introduce the discrete-time
ARX model

Al(q)y(k) = Bl(q)u(k) + el(k), (4)

with:

Al(q) = 1− al1q−1 − al2q−2 − al3q−3 − ...− alnq−n

Bl(q) = bl1q
−1 + bl2q

−2 + bl3q
−3 + ...+ blmq

−m,
(5)

where k ∈ N represents time, u(k) is the input, y(k) the
output, el(k) a white noise process. The DARX can also be
written as:

y(k) = al1y(k − 1) + ...+ alny(k − n)

+bl1u(k − 1) + ...+ blmu(k −m) + el(k).
(6)

The parameters and measurements are formulated as vectors

θ =



al1
...
aln
bl1
...
blm


φ(k) =



y(k − 1)
...

y(k − n)
u(k − 1)

...
u(k −m)


With these new vectors, the model in (6) can be rewritten

as
y(k) = φT (k)θ + el(k) (7)

We call the the parameter we want to estimate θ̂, The best
set of parameters θ̂ is the one that minimizes the sum of the
squared values of el. This minimization problem has a unique
solution, solved by the normal equation:(

1

N

N∑
k=1

φ(k)φT (k)

)
θ̂ =

(
1

N

N∑
k=1

φ(k)y(k)

)
. (8)

Finally the parameter vector is given by

θ̂ =

(
1

N

N∑
k=1

φ(k)φT (k)

)−1(
1

N

N∑
k=1

φ(k)y(k)

)
. (9)

The parameters can be estimated if we have all the mea-
surements. If there are missing observations, the method is
to do the summation only over values such that both y(k)
and φ(k) are complete. After completing θ̂, we can obtain the
parameters of the continuous-time model by doing ‘d2c’ in
Matlab. Because φ(k) contains previous information of y(k)
and u(t), when one point is missing, for example u(5), then
φ(6), φ(7), ..., φ(5 + m) are also incomplete, which means
that the number of samples with complete information may
be very small if the missing data is in non-ideal pattern (e.g.
lose data every n moment may cause disappearance of the
complete φ(k)) and lead to estimation that is not ideal.

Motivating example: Consider the following CARX pro-
cess

(p+ 2)y(t) = 50u(t) + e(t) (10)

with the parameter vector given by θ0 = [2 25]T ; the
spectral power of e(t) is σ2

v = 1. Assume that there are
N = 100 samples under the sampling time Ts = 1.
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Fig. 1. Plots of the Least-squares method for system (10). Left - no missing data. Right - with 5% data missing

It can be seen in Fig. 1. that least-squares give a good
estimation result when measurements are complete. When
there is missing data, even with small percentage, least squares
will lead to a biased estimates with high variance.

III. STATE-SPACE FORMULATION

We have already seen in the last section that considering
only the available data will lead to an inaccurate estimation
with big variance, so filling in the missing data seems neces-
sary. In order to reconstruct the missing observations, we need
to formulate a state-space model first. The CARX model (1)
can be described in a state-space framework as

ẋy(t) = Ayxy(t) +Byu(t) + Eye(t)

y(t) = Cyxy(t)
(11)

In this thesis, the observable canonical form is chosen, and
hence Ay ∈ Rn×n, By ∈ Rn×1, Ey ∈ Rn×1 and Cy ∈ R1×n

have the structures with

A =


−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0

By =


b1
b2
b3
...
bn

Ey =


1
0
0
...
0


Cy =

[
1 0 0 · · · 0

]
Here we consider two cases as mentioned in Section II-A,
namely a continuous-time input model and a discrete-time
input model. We will show later that the continuous-time
input model leads to large variance if the inputs are generated
assuming zero-order hold.

A. Continuous-time u(t)

We first consider a continuous-time input. The input signal
in (2) is written in the observable canonical form

ẋcu(t) = Acux
c
u(t) +Bcuv(t)

u(t) = Ccux
c
u(t)

where Acu ∈ Rm1×m1 , Bcu ∈ Rm1×1 and Ccu ∈ R1×m1 are
defined as

Acu =


−cc1 1 0 · · · 0
−cc2 0 1 · · · 0

...
...

...
. . .

...
−ccm1−1 0 0 · · · 1
−ccm1

0 0 · · · 0

Bcu =


1
0
0
...
0

Ccu =


1
0
0
...
0


T

.

Let

x(t) =

[
xy(t)
xu(t)

]
, z(t) =

[
y(t)
u(t)

]
, γ(t) =

[
e(t)
v(t)

]
;

then we can obtain complete state-space model:

ẋ(t) = Acx(t) +Kγ(t)

z(t) = Cx(t),

where

Ac =

[
Ay ByC

c
u

0 Acu

]
, K =

[
Ey 0
0 Bcu

]
, C =

[
Cy 0
0 Ccu

]
,

and the resulting noise γ(t) becomes [e(t) v(t)]T , with
covariance

E
{
γ(t)γT (t)

}
= Λ =

[
σ2
e 0

0 σ2
v

]
. (12)

Notice that the noise is ideally modeled as completely white in
order to obtain the Markov property. However, in order to im-
plement the proposed identification schemes, the continuous-
time model has to be discretized based on the sampling interval
h. Such discretization yields to the equivalent discrete-time
model:

x(k + 1) = F1x(k) + η(k)

z(k) = H1x(k)
, (13)

where F1 = eAch (see [16]), H1 = C, and η(k) is zero
mean discrete-time white noise with covariance matrix Q1 that
includes solving an integral involving the matrix exponential
on the form [16]:

Q1 =

∫ h

0

eAcτΛeA
T
c τdτ. (14)
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Notice that the discretization of process noise includes an
integral, which is difficult to implement in simulation. Here we
adopt the method present in [17] to compute it in an efficient
way. First we define a square matrix T as follows:

T =

[
−Ac KΛKT

0 ATc

]
, (15)

and denote its exponential matrix by

Tk = eTh =

[
· · · A−1

d Q
0 ATd

]
. (16)

Then we can obtain the discretized process noise Q evaluated
by multiplying Ad with the upper-right partition of Tk.

B. Discrete-time u(k)

In the second case, we assume a discrete-time AR model
for the input. The input signal in (3) is written on the form

xdu(k + 1) = Adux
d
u(k) +Bduw(k)

u(k) = Cdux
u(k) + w(k)

,

where Adu ∈ Rm2×m2 , Bdu ∈ Rm2×1 and Cdu ∈ R1×m2 are
defined as

Adu =


−cc1 −cc2 · · · −ccm2−1 −ccm2

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

Bdu =


1
0
0
...
0


Cdu =

[
−cc1 −cc2 · · · −ccm2

]
.

For the same reason, the continuous-time model (11) has to be
discretized based on the sampling interval h, assuming zero-
order hold for the input u and continuous integration for the
noise e,

xy(k + 1) = Adyxy(k) +Bdyu(k) + ξ(k)

y(k) = Cyxy(k)
(17)

with Ady = eAyh, Bd = A−1
y (Ady − I)B1 ([16]), ξ(k) is zero

mean discrete-time white noise with covariance matrix given
by

Q2 =

∫ h

0

eAyτσ2
ee
AT

y τdτ.

Let

x(k) =

[
xy(k)
xdu(k)

]
, z(k) =

[
y(k)
u(k)

]
, δ(k) =

[
ξ(k)
w(k)

]
;

then we can obtain complete state-space model:

x(k + 1) = F2x(k) +Gδ(k)

z(k) = H2x(k) + Lδ(k)
, (18)

with

F2 =

[
Ady BdyC

d
u

0 Adu

]
G =

[
I Bdy
0 Bdu

]
H2 =

[
Cy 0
0 Cdu

]
L =

[
0 0
0 I

] . (19)

We can see that the noise δ(k) acts in both the process and
measurement models, which means that the process noise
is correlated with the measurement noise. This correlation
requires a full form of Kalman filter equations, which will
be discussed in following section.

IV. RECONSTRUCTION

We have introduced the state-space formulation in the
previous section, which can be used to reconstruct the missing
observations. The reconstruction should be based on previous
measurements, i.e., the estimates of a Kalman filter, which
is a well-known tool to estimate the states of linear sys-
tems using the available measurements. We take model (18)
as example, substituting the measurement noise Lδ(k) with
ζ(k) =

[
0 w(k)

]T
. Then

x(k + 1) = F2x(k) +Gδ(k)

z(k) = H2x(k) + ζ(k)
.

We know that the system behaves according to the state-space
equations, and we have measurements z(k). Then the Kalman
filter gives the estimate of x(k) with smallest possible error
variance. Notice that the process noise δ(k) and ζ(k) are
assumed to be Gaussian with

E
{[
δ(k)
ζ(k)

] [
δT (k) ζT (k)

]}
=

[
R1 R12

R21 R2

]
.

We obtain R12 6= 0 as mentioned before, so that the process
noise is correlated with the measurement noise. The predicted
and filtered estimates will be denoted as x̂(k+1|k) and x̂(k+
1|k + 1), corresponding covariance matrices are denoted by
P (k + 1|k) and P (k + 1|k + 1). The Kalman filter equation
with correlated noise are shown as follows [19]:
TIME UPDATE:

x̂(k + 1|k) = Fc(k)x̂(k|k) +G(k)R12(k)R−1
2 (k)z(k) (20)

and

P (k + 1|k) = Fc(k)P (k|k)FTc (k)

+G(k)(R1(k)−R12(k)R−1
2 (k)R12(k)T )G(k)T ,

(21)

where

Fc(k) = (F2(k)−G(k)R12(k)R−1
2 (k)H2(k)). (22)

MEASUREMENT UPDATE:

x̂(k + 1|k + 1) = x̂(k + 1|k) + P (k + 1|k)HT
2 (k + 1)

×Sc(k)−1ε(k + 1)
(23)

where ε(k) represents the innovation or prediction error

ε(k) = (z(k)−H2(k)x̂(k|k − 1)) (24)

and

P (k + 1|k + 1) = P (k + 1|k)− P (k + 1|k)

×HT
2 (k + 1)Sc(k)−1H2(k + 1)P (k + 1|k),

(25)

where

Sc(k) = H2(k+ 1)P (k+ 1|k)HT
2 (k+ 1) +R2(k+ 1). (26)
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The quantities ε(k) and Sc(k) will be used in the next Section
to derive the developed identification technique based on
maximum likelihood.

V. MAXIMUM LIKELIHOOD

In this section we will discuss the estimation approaches
for the system parameters. The maximum likelihood method
provides estimates of the parameter values based on an ob-
served data set ZN = Z(1), Z(2), ..., Z(N) by maximizing a
likelihood function. In order to use this method it is therefore
necessary to first derive an expression for the likelihood
function. We suppose that there is a series of independent
identically distributed samples x1, x2, ..., xN (xk ∈ Rn×1),
coming from a Gaussian distribution with probability density
function

fθ(x|µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (x−µ)T Σ−1(x−µ), (27)

where µ ∈ Rn×1 is the mean vector, Σ ∈ Rn×n is the
covariance matrix. A likelihood for a model is defined by the
same equation expression as the probability density, but the
roles of the data x and the parameter θ are interchanged.

Lxi
(θ) = fθ(xi). (28)

Then the likelihood function for the full set of measurement
can be shown as follows:

L(θ|x1, x2, ..., xN ) = f(x1, x2, ..., xN |θ)
= f(x1|θ) · (x2|θ) · ... · f(xN |θ)

, (29)

The so-called method of maximum likelihood is an estimator
of the unknown true parameter value θ. The point θ̂ that
maximizes the likelihood function L is the final estimate
we want. This estimator is called the maximum likelihood
estimator (MLE). In practice, it is often more convenient when
working with the natural logarithm of the likelihood function,
(using the rule log a · b = log a + log b), namely the log-
likelihood

logL(θ|x1, x2, ..., xN ) =

N∑
i=1

log f(xi|θ), (30)

where log is the natural logarithm. In our case, the probability
density function f(xi|θ) can be completed using the Kalman
filter mentioned above. According to the papers [4], [13] and
[14], the prediction errors ε(k) form a sequence uncorrelated
in time. If the noise in the state-space model is Gaussian, then
ε(k) is also Gaussian distributed. Let ZN be the complete
batch of observations. The likelihood function is then

L(θ|ZN ) =

N∏
k=1

1√
2π detSc(k)

e−
1
2 ε

T (k)S−1
c (k)ε(k) (31)

where Sc(k) is the covariance matrix of the prediction error
and ε(k) is the innovation as mention in last section.

Sc(k) = H(k)P (k|k − 1)HT (k) +R2(k) (32)

Then, we can calculate the log-likelihood function based on
(30) as follows:

logL(θ|ZN ) = C − 1

2

N∑
k=1

log(detSc(k))

−1

2

N∑
k=1

εT (k)S−1
c (k)ε(k)

. (33)

Let W (k) be

W (k) =
1

2

N∑
k=1

log(detSc(k)) +
1

2

N∑
k=1

εT (k)S−1
c (k)ε(k).

(34)
Finding the maximum of logL(θ|ZN ) is equivalent to finding
the minimum of W (k), which can be done, e.g, using a quasi-
Newton method [20]. The key to quasi-Newton method is the
calculation of the Hessian matrix Hk, which normally requires
the calculation of second derivative. Instead of using the true
Hessian matrix, a recursive process is chosen to do updating. In
this thesis, we use BFGS formulation suggested by Broyden,
Fletcher, Goldfarb, and Shanno [20] to calculate the update
matrix.

VI. MISSING DATA FORMULATION

In this Section, we discuss two ways to incorporate missing
data.

A. Isaksson’s D(k) together with doubling sampling time

We first consider to remove the data directly. Define D(k) as
a matrix reducing the number of rows in z(k). If, for example
if the measurement u(k) is missing, we set

D(k) =
[
1 0

]
Denoting the measured part of z(k) by zm(k) the measurement
equation is

zm(k) = D(k)z(k) = y(k)

. In this way, we simply omit the row in the measurement
equation corresponding to the missing observation. Similarly,
when the measurement y(k) is missing, we set

D(k) =
[
0 1

]
so that

zm(k) = D(k)z(k) = u(k)

If, for example, no measurement is missing, then

D(k) =

[
1 0
0 1

]
. (35)

How the incomplete data influence the likelihood function (33)
is shown as follows:

R1 = Λ,

R2(k) = D(k)ΛDT (k),

R12(k) = ΛDT (k),

H(k) = D(k)H,
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ε(k) = zm(k)−H(k)x̂(k|k − 1).

We can see from above that the missing data change the
value of Sc(k) and ε(k). The tricky part is when both y(k)
and u(k) are missing at certain sampled time k. Since one can
not remove all the rows in z(k) using this method, we consider
skipping the missing measurements by doubling the sampling
time. A different sampling time will change the value of state
matrix and covariance in (13) or (17), which also influence
the Kalman filter and the ML estimation. Notice that for the
model with discrete-time input, we get a similar model to [4]
after the discretization (18) by substituting the measurement
noise with ζ(k) =

[
0 w(k)

]T
. Then

x(k + 1) = F2x(k) +Gδ(k)

z(k) = H2x(k) + ζ(k)

The covariances for the process and the measurement noises
are given by R1 and R2 respectively, and the cross covariance
by R12, so that[

R1 R12

R12 R2

]
= E

{[
δ(k)
ζ(k)

] [
δT (k) ζT (k)

]}
,

R1 = E
{[

ξ2(k) ξ(k)w(k)
w(k)ξ(k) w2(k)

]}
=

[
Q2 0
0 σ2

w

]
,

R12 = E
{[

0 ξ(k)w(k)
0 w2(k)

]}
=

[
0 0
0 σ2

w

]
,

R21 = E
{[

0 0
w(k)ξ(k) w2(k)

]}
=

[
0 0
0 σ2

w

]
,

R2 = E
{[

0 0
0 w2(k)

]}
=

[
0 0
0 σ2

w

]
.

B. Infinite Variance

The second method is to define D(k) as a diagonal matrix
with entries on the i-th diagonal element when i-th element
of z(k) is available. In our case the observation z(k) =[
y(k) u(k)

]T
, so D(k) ∈ R2×2, D(k) is used to give infinite

value to specific element of R2 and R12. Here we assume that
a missing measurement can be regarded as a measurement with
noise with infinite variance.
For example, if y(k) is missing,

D(k) =

[
0 0
0 1

]
D−1(k) =

[
∞ 0
0 1

]
where we have introduced a special notation for the inverse
of D(k). In this way we have that

R2(k) = D−1(k)R2D
−1(k)T ,

R12(k) = R12D
−1(k)T .

. The ‘infinity’ element can not be implement in simulations
but we noticed that R2 always comes up with inverse in
Kalman filter equations (20) ∼ (26),

R−1(k) = D(k)TR−1
2 D(k)

Similarly, if u(k) is missing, then

D(k) =

[
1 0
0 0

]
if both u(k) and y(k) are missing, then

D(k) =

[
0 0
0 0

]
.

The tricky part is when both y(k) and u(k) are missing,
it yields to a zero determinant Sc(k), which can not be
calculated under the natural logarithm. Hence, we implement
this method only with Expectation-Maximization algorithm,
which is shown in Appendix A.

VII. SIMULATION RESULTS

Two cases mentioned in Section III are simulated with a
simple continuous-time ARX model. The true system model
is chosen as

A(p)y(t) = B(p)u(t) + e(t) (36)

with

A(p) = p+ a

B(p) = b,

where the parameter vector is θ0 =
[
a b

]T
=
[
2 50

]T
.

e(t) is zero mean continuous-time white noise with a priori
known variance E

{
v2(t)

}
= 1. The system was sampled with

sampling time 0.5s, assuming zero-order hold for input and
it was simulated for 50 noise realizations, each with N data
points and M% missing data.

A. Simulation 1: continuous-time input model

In simulation 1, we considered a continuous-time input
model with N = 100, M = 0, 10, 20, 50. A simple
continuous-time AR model is chosen:

C(p)u(t) = v(t), (37)

with
C(p) = p+ c.

w(t) is zero mean continuous-time white noise with spec-
tral power E

{
v2(t)

}
= 1. Then the parameter vector is

θ0 =
[
a b c

]T
=
[
2 50 1

]T
. The estimation result is

shown in Figure. 2. Mean and variance of the estimates can
be found in Table I. The figure shows how this model response
to different percentage of missing data.

In this case, continuous-time input model formulation yields
to unbiased estimation with big variance for both a and b even
under no missing data. Moreover, the estimation result remains
accurate when the missing percentage reaches 50%.

B. Simulation 2: discrete-time input model

In simulation 2, we considered a discrete-time input model
with N = 100, M = 0, 10, 20, 50. A simple discrete-time AR
model for input:

C(q)u(k) = w(k), (38)
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with
C(q) = 1 + cq−1.

w(k) is zero mean discrete-time white noise with spectral
power E

{
w2(k)

}
= 0.6. Then the parameter vector is

θ0 =
[
a b c

]T
=
[
2 50 −0.18

]T
. The estimation result

is shown in Figure. 3. Mean and variance of the estimates can
be found in Table II. The figure shows how well the model is
identified when we have different percentage of missing data.

In this case, discrete-time input model apparently performs
better than the other alternatives under modest amount of
missing data. The variance of parameter a is one magnitude
smaller than the continuous-time model when 0% and 10 %
data are removed. On the other hand, this model is more
sensitive to incomplete data, it can been seen that the variance
increases greatly when we add 10% missing measurements
every time. Moreover, the estimation can be regarded as failure
(inaccurate mean and big variance) when there are 50% data
missing.

C. Simulation 3: Discrete-time ARX model

In simulation 3, we identified a discrete-time ARX model
using the sampled data (same data set as simulation 2). The
estimation was done by applying the EM algorithm, which
is discussed in Appendix A. The estimation result is shown
in Figure. 4. Mean and variance of the estimates can be
found in Table III. We can see from the figure that the
EM algorithm estimation perform equally well compared to
quasi-Newton optimization of the maximum likelihood (see
simulation 2) when data are complete. This also corresponds to
the conclusion in [4] that EM is an alternative way to calculate
the maximum of likelihood function. We also noticed a jump
in variance when measurements start missing, the variance
of b increased from 0.0592 to 5.2796 within 10% missing
measurements.

D. Simulation 4: Same data points

In simulation 4, we took the model in simulation 2 and
investigated the influence of missing data by considering data
sets that have the same number of data points, but different
time spans. The result is shown in Figure. 5 and Table IV,
which contains 100 sampled data with no missing percent-
age, 112 sampled data with 10% missing, 125 sampled data
with 20% missing and 200 sampled data with 50% missing
respectively. These four cases result in the same amount of
available data (100). It is clear that the accuracy depends
more on the missing percentage. 200 sampled measurements
with 50% missing data gives worse estimation. On the other
hand, we can also compare the result under same proportion of
missing data, e.g. under 50% missing condition, 200 sampled
data performs better than 100 sampled data.

VIII. CONCLUSION

The problem of estimating the parameters in CARX pro-
cesses with input generated with ZOH from incomplete sam-
pled data is considered and a direct approach under two differ-
ent input models is suggested as solution. We first show that
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Fig. 2. Continuous-time input model with different percentage of data
missing.
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Fig. 3. Discrete-time input model with different percentage of data missing.
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Fig. 4. Discrete-time ARX model with different percentage of data missing.
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Fig. 5. Discrete-time input model with different percentage of data missing
under same data points.

TABLE I
SIMULATION RESULTS OF CONTINUOUS-TIME INPUT MODEL

CAR input a b c

No missing mean 2.0177 50.3370 1.0632
variance 0.0143 5.9528 0.0384

10 % missing mean 1.9989 50.0539 0.9894
variance 0.0193 9.0865 0.0386

20 % missing mean 1.9796 50.0528 1.1069
variance 0.0285 13.9407 0.0736

50 % missing mean 1.9844 50.0311 1.0565
variance 0.0728 27.4808 0.1085

TABLE II
SIMULATION RESULTS OF DISCRETE-TIME INPUT MODEL

DAR input a b c

No missing mean 2.0063 50.0733 -0.1818
variance 2.9335e−4 0.0799 0.0144

10 % missing mean 1.9941 49.6341 -0.1616
variance 0.0034 1.8406 0.0130

20 % missing mean 2.0265 48.9531 -0.1784
variance 0.0187 4.5063 0.0106

50 % missing mean 1.6767 38.8121 -0.0759
variance 0.3211 116.3561 0.0127

TABLE III
SIMULATION RESULTS OF DISCRETE-TIME ARX MODEL

DARX model a b c

No missing mean 1.9998 50.0627 *
variance 3.8404e−4 0.0592 *

10 % missing mean 2.0326 50.4140 *
variance 0.0432 5.2796 *

20 % missing mean 2.0616 50.5909 *
variance 0.1052 12.5770 *

50 % missing mean 2.1454 52.6127 *
variance 0.2893 41.9494 *

TABLE IV
SIMULATION RESULTS OF SAME DATA POINTS

Same data points a b c

M=0, N=100 mean 2.0006 50.0046 -0.1885
variance 1.4966e−4 0.0745 0.0043

M=10, N=112 mean 2.0048 50.0531 -0.1853
variance 9.8574e−4 0.5187 0.0046

M=20, N=125 mean 1.9956 49.2763 -0.1766
variance 0.0045 2.8745 0.0034

M=50, N=200 mean 1.9273 47.0091 -0.1605
variance 0.0493 21.2840 0.0138

Least-squares leads to a biased result. The method presented
then is based on that the missing data can be reconstructed by
the estimates of a Kalman filter.

Numerical studies show that the discrete-time input model
gives a better estimation when not too many data missing. The
continuous-time input model yields to a estimation with large
variance even with little missing data. For sake of comparison,
we also propose to estimate the parameters by identifying a
discrete-time model using sampled data and then convert it to
continuous time, which can be regarded as indirect approach.
This method gives a similar result to discrete-time input model
under complete data. A disadvantage with discrete-time input
model, though, is that its performance are more sensitive
to missing data than continuous-time input model, giving
inaccurate estimates when half measurements are lost. We have
also verified that larger amount of data points lead to better
performance.
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APPENDIX A

As mentioned in Section VII-D, we use EM algorithm
to estimate a discrete-time ARX model first then do ’d2c’
to obtain the parameters of continuous-time model. The EM
algorithm is used to find the maximum likelihood parameters
of a model in cases where the equations cannot be solved
directly. The basis for the EM algorithm is two data sets X
and Y , which represent complete data and incomplete data
respectively. In this way, if X is observed, an observation of
Y is available too, but not vice versa. We suppose that the
likelihood function of the complete data X is L(θ|X) and the
parameter θ̂ is obtained

θ̂ = arg max
θ

logL(θ|X)

The EM algorithm seeks to find the estimate by iteratively
applying two steps [4]. Firstly, we start with the ’E-step’,
calculating the expected value of the log likelihood function
Q(θ|θ(0)) with respect to incomplete data set Y given X
under the current θ(0). This Q is then used to obtain a
new estimate θ(1) in the so called ’M-step’. The new θ(1)

is then feedback to the ’E-step’, iterating until convergence.
In this thesis the estimate θ(n) is said to have converaged if
‖ θ(n+1) − θ(n) ‖< 0.001.

The difficulty of EM algorithm is at the E-step where we
need to compute the conditional expectation Q(θ|θ(n)) and
this will be discussed in following part.

We considered a DARX model as (4) in the motivating
example in Section II and a DAR model for the input u.

Al(q)y(k) = Bl(q)u(k) + vl(k)

Cl((1)u(k) = wl(k),
(39)

with

Al(q) = 1− al1q−1 − al2q−2 − ...− alnq−n,
Bl(q) = bl1q

−1 + bl2q
−2 + ...+ blmq

−m,

Cl(q) = 1− cl1q−1 − cl2q−2 − ...− alnq−n.
(40)

where v(k) and w(k) are zero mean white noise sequences
with E

{
v2(k)

}
= λ1 and E

{
w2(k)

}
= λ2 respectively.

Define φ1(k) and φ2(k) as

φ1(k) =



y(k − 1)
u(k − 1)
y(k − 2)
u(k − 2)

...
y(k − n)
u(k − n)


=


z(k − 1)
z(k − 2)

...
z(k − n)

 θ1 =


a1

b1
...
an
bn



φ2(k) =


u(k − 1)
u(k − 2)

...
u(k − n)

 θ2 =


c1
c2
...
cn


With these new vectors, model (39) can be represented as

y(k) = φT1 (k)θ1 + v(k)

u(k) = φT2 (k)θ2 + w(k)

To estimate θ1 and θ2, we first write the log-likelihood function
based on Section III and [25]

logL(θ, λ1, λ2) = C − N

2
log λ1 −

N

2
log λ2

− 1

2λ1

N∑
k=1

(y(k)− φT1 (k)θ1)2 − 1

2λ2

N∑
k=1

(u(k)− φT2 (k)θ2)2

Then we need to calculate Q(θ, λ1, λ2|θ(n), λ
(n)
1 , λ

(n)
2 ). We

denote the conditional expectation based on the all the obser-
vations E{|̇ZN} by EN .

Q(θ, λ1, λ2|θ(n), λ
(n)
1 , λ

(n)
2 ) = EN{logL(θ, λ1, λ2)}

= −N
2

log λ1 −
N

2
log λ2 −

1

2λ1

N∑
k=1

EN (y(k)− φT1 (k)θ1)2

− 1

2λ2

N∑
k=1

EN (u(k)− φT2 (k)θ2)2

(41)

Setting derivatives of Q(θ, λ1, λ2|θ(n), λ
(n)
1 , λ

(n)
2 ) with respect

to λ1 and λ2 to zero

∂Q

∂λ1
= 0,

∂Q

∂λ2
= 0 (42)

which lead to

λ1 =
1

N

N∑
k=1

EN (y(k)− φT1 (k)θ1)2

λ2 =
1

N

N∑
k=1

EN (u(k)− φT2 (k)θ2)2

(43)

Then substitute λ1 and λ2 in (10) with (12) yields to

Q(θ, λ1, λ2|θ(n), λ
(n)
1 , λ

(n)
2 ) =

C − 2

N
log

(
1

N

N∑
k=1

EN (y(k)− φT1 (k)θ1)2

)
︸ ︷︷ ︸

V1(θ1)

−N
2

log

(
1

N

N∑
k=1

EN (u(k)− φT2 (k)θ2)2

)
︸ ︷︷ ︸

V2(θ2)

(44)

Now we need to maximize V1(θ1) and V2(θ2), which becomes
a least square problem.

θ
(n+1)
1 =

 N∑
k=1

EN{φ1(k)φT1 (k)}︸ ︷︷ ︸
1©


−1

N∑
k=1

EN{φ1(k)y(k)}︸ ︷︷ ︸
2©

θ
(n+1)
2 =

 N∑
k=1

EN{φ2(k)φT2 (k)}︸ ︷︷ ︸
3©


−1

N∑
k=1

EN{φ2(k)y(k)}︸ ︷︷ ︸
4©
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and the update of the variance

λ
(n+1)
1 =

1

N

N∑
k=1

EN (y(k)− φT1 (k)θ
(n+1)
1 )2

λ
(n+1)
2 =

1

N

N∑
k=1

EN (u(k)− φT2 (k)θ
(n+1)
2 )2

(45)

λ
(n+1)
1 =

1

N

N∑
k=1

EN (y2(k)− 2y(k)φT1 (k)θ
(n+1)
1

+θ
(n+1)T

1 φ1(k)φT1 (k)θ
(n+1)
1 )

λ
(n+1)
2 =

1

N

N∑
k=1

EN (u2(k)− 2u(k)φT2 (k)θ
(n+1)
2

+θ
(n+1)T

2 φ2(k)φT2 (k)θ
(n+1)
2 )

(46)

Therefore, to apply the EM algorithm we should calculate
the expectations above. We have already obtained the filtered
Kalman estimate x̂(k|k) in the previous section. According
to [4], a better reconstruction can be obtained using a fixed
interval smoother with all observations. The optimal fixed-
interval smoother provides x̂(k|N) for k < N , and there
are several smoothing algorithms in common use. According
to [4], a so called Rauch-Tung-Striebel (RTS) smoother is
considered, which is an efficient algorithm for fixed interval
smoothing [21]. In order to correspond to the equations of
Kalman filter in Section III, we choose same the notations
based on model (18) The equations of the smoothing process
are as follows [22] [4]:

x̂(k − 1|N) = x̂(k − 1|k − 1)

+P (k − 1|k − 2)F
T

(k − 1)S1(k)
(47)

P (k − 1|N) = P (k − 1|k − 1)− P (k − 1|k − 2)

·FT (k − 1)S2(k)F (k − 1)P (k − 1|k − 2)
(48)

where

F (k) = F2(k)−K(k)H2(k)

K(k) = (F2P (k|k − 1)HT
2 (k) +GR12(k))

·[H2(k)P (k|k − 1)HT
2 (k) +R2(k)]−1

Besides, S1 and S2 in the smoothing equations are obtained by
backwards recursively updating by taking j = N,N − 1, N −
2, · · · , 1.

S1(j) = F
T

(j)S1(j + 1)

+HT
2 (j)[H2(j)P (j|j − 1)HT

2 (j) +R2(j)]−1ε(j)

S2(j) = F
T

(j)S2(j + 1)F (j) +HT
2 (j)

·(H2(j)P (j|j − 1)HT
2 (j) +R2(j))−1H2(j)

The initial condition should be considered as S1(N + 1) = 0
and S1(N + 1) = 0, which leads to x̂(N |N) = x̂(N |N) in
(47) and P (N |N) = P (N |N) in (48).

To evaluate 1© and 3© we use the state-space formulation

to perform the expectation.

EN{φ1(k)} = EN{x(k)(1 : (n− 2))} = x̂(k|N)(1 : (n− 2))

EN{φ2(k)} = EN{x(k)(2 : 2 : 2n−2)} = x̂(k|N)(2 : 2 : 2n−2)

1 : (n−2) means the first row to the (n−2)th row. According
to [4], the standard formula

E(x− Ex)(x− Ex)T = ExxT − ExExT

We know that the definition of covariance matrix P (k|N) is

P (k|N) = EN{(x(k)− x̂(k|N))(x(k)− x̂(k|N))T }

Hence, 1©

EN{φ1(k)φT1 (k)} = x̂(k|N)x̂(k|N)T (1 : (n−2))+P1(k|N)

where P1(k|N) is P (k|N)((2n − 1) × (2n − 1)). Similarly,
P2(k|N) = P (k|N)(2 : 2 : 2n− 2)× (2 : 2 : 2n− 2)
3©

EN{φ2(k)φT2 (k)} = x̂(k|N)x̂(k|N)T [2, 4, ..., 2n−2]+P2(k|N)

Moreover, we need to compute 2© and 4© which depend on
y(k) and u(k). φ1(k) can be found in the one step ahead vector
x(k+ 1) as element 3 to 2n+ 2, and y(k) as first element of
x(k + 1). The corresponding covariance matrix is donated as
P2(k+1|N). φ2(k) can be found in the one step ahead vector
x(k+ 1) as elements (4 : 2 : 2n), and u(k) as second element
of x(k + 1). The corresponding covariance matrix is donated
as P4(k + 1|N).


